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Receptive Fields and the
Representation of Visual Information
:;::‘ Steven W. Zucker
:;:;‘;; Robert A. Hummel
i
:f:;:’ Abstract
~ Receptive fields in the retina indicate the first measurements taken over the

At (discrete) visual image. Why are they circular surround with an
g;zioi excitatory/inhibitory structure? We hypothesize that this provides a representation
;:ﬁ:: of the visual information in a form suitable for transmission over the optic nerve, a
:é:ifx rather limited channel, that can then be extended into a variety of representations at
E the cortex. These cortical representations span a range of sizes and functionally
. separate positive and negative contrast data, precisely as is required for further
L’::;: processing. Our scheme is both physiologically and psychophysically plausible. In
:::': particular, we derive an explicit formula for constructing large receptive fields from
::;::: small ones, and introduce the notion of de-blurring to derive interpolation filters for
»:.:g: hyperacuity. A mathematical requirement of our scheme is a form of separation
_ between positive and negative contrast data, a nonlinearity that we predict will
R1e agree with observations. Furthermore, the mathematics that we utilize are more
‘-';-' » naturally applicable to physiologicgl moglels based on analysis by Gaussians than by
: ﬂ' (Fourier) gatli! f?equencles. /1\/ 1l 2 podan N 07\;114,,,67 K
oy AT T el /
e 1. Introduction
{gﬁ, The structure of receptive fields provides one of the most powerful constraints
1?5:{: on visual information processing. They provide a system within which
A electrophysiologists can classify and compare their research, and they suggest
) properties of mechanisms. But how do they relate to abstract functional properties
,;.';;-; of the visual system? For example, why are some structured in a center-surround
;::e:: fashion? Why do they arise in both ON and OFF varieties? How do they support
fs:'.la the communication of information from the retina to the cortex, and how can they
.ﬁ:::f account for hyperacuity? These are some of the questions we shall address in this
e paper. In general, all of the answers are related to schemes for representing visual
i;;;:; information,
:‘:;: Our plan is to develop a mathematical model for the representation of spatial
.E:fx visual information.! Many of the approaches to assessing receptive field structure
;Zynf{ (and related psychophysics) are based on Fourier techniques: sines and cosines.

However, sinusoids are artificial constructs which may not be the most appropriate
J;x;.’ language for the description of images. On the other hand, they do have certain
3;;:.9 attractive properties, such as the separation of high and low spatial frequencies and
;'.,‘: notions of linearity and superposition, to which we shall return. More recent
j;::Q:‘ attempts are based on different basic functions: those that come out of D. Gabor's
Y1)
'In this study we ignore issues of temporal processing [Fleet et al., 1984] and hence it only approximates
;:a;.g those situations in which temporal effects are negligible.
i
Vg
Al
e
B :
B R R P o R A B S R R R R S S AR (TS

R S

-y e




Receptive Flelds and the Reconstruction of Visual Information

theory of communication [Gabor, 1946; Marcelja, 1980]. These are much closer to
what we shall use, although the theoretical motivation is completely different. In
particular, Gabor was interested in functions for encoding information that were
optimal in the sense that they minimized a certain ‘“‘uncertainty’ relationship in
both space and spatial frequency. Our functions are motivated by notions of
blurring and de-blurring. While the result is quite similar in appearance, the precise
mathematical forms differ.

2. Receptive Fields and Image Representation

The layout of the visual system implies a need to communicate information
between the retina and the cortex, but how does this communication take place?
Whatever the process, the result in the cortex is not simply a re-presentation of the
image sensed in the retina, as would be the case if the optic nerve were an array of
perfect optical fibres; but rather is a representation of the image information in the
form of a sample hierarchy. Such hierarchies arise from the successive application
of blurring operators [Witkin, 1983; Koenderink, 1984); see Fig. 1. While such
hierarchies are certainly useful within efficient coding schemes [Srinivasan,
Laughlin, and Dubs, 1982; Burt and Adelson, 1983], how should they be
constructed? Does the process of constructing the ‘“‘larger’ representations from the
“smaller” ones lose information, either in theory or in practice?

Receptive fields constrain two aspects of early visual information processing:
which measurements are taken over the raw retinal image, and how transformations
of these measurements provide a representation of visual information rich enough to
efficiently support subsequent processing. We shall concentrate on the X-pathway
[Orban, 1984), along which retinal receptive fields exhibit a circular surround

organization with excitatory/inhibitory interactions.?2 The first stages of image
analysis, such as orientation selection, take place in the cortex, which raises the
problem of how precise visual information can be communicated from the retina
onwards [Srinivasan et al., 1982]. We propose a formal solution to this problem
which leads to two principle observations. First, we derive an explicit formula for
describing how larger receptive fields can be constructed from smaller ones. We
posit certain non-linearities related to a separation of ‘‘positive’ and “negative”
contrast data. Secondly, it turns out that some degree of additional precision in the
information can be obtained by a process of deblurring, which could be relevant to
hyperacuity. It also provides an explanation for the additional side-lobes found on
smaller cortical receptive fields, which could serve, in functional terms, to aid in the
precise localization of contours.

The paper is organized as follows. An overview of our model is presented
next, followed by two large Sections. In the first of these (Sec. 3) we analyze the
model mathematically, and in the second (Sec. 4) we apply it to study several

o3 different aspects of receptive field structure. Although much of the treatment in Sec.
:ﬁy 3 is abstract, it is not necessary to follow all of the mathematics in detail. What is
;::.; necessary are the motivations and intuitions behind it, since it is these that may
.jp} provide a deeper understanding of certain aspects of receptive fields, as well as of

n the cortex receptive fields take on an elongated structure, with approximately Gaussian structure in the
elongated direction and the excitatory/inhibitory structure in the perpendicular direction. We shall be concerned
with constructive mechanisms for both of these types of structure.
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Figore 1. An illustration of successive blurring of a signal. In this example the
signal is 1-dimensional (along the x-axis). It is blurred by a Gaussian kernel again
and again. The y-axis represents the effective amount of blur; i.e., the spatial
parameter for the Gaussian. Note that increasing amounts of blur smooth over
details of the initial data, and the peak appears to diffuse into a bump so wide that it
will eventually approach a constant. An alternative interpretation of this figure is as
a diffusion. Note how the sharp initial pulse (for ¢ = Q) spreads into a wide, diffuse
one for larger values of 7.

the relationship between abstract models and physiology.

3. Overview of the Model

We will present a description of the model immediately as a basis for study and
subsequent discussion. In order to postpone issues of implementation; i.e., details of
how the model maps onto physiology, the presentation is mathematical. However,
we do have intuitions about the mapping, and will sketch possibilities throughout the
paper as the details of the model are developed.

Let the light intensity distribution imaged on the (retinal) receptor surface be
given by f(x,y). The light distribution is not available directly, however. Rather, the
initial samples are obtained from (Df)(x,y), where D is a differential operator. For
our discussion, we will take D to be a Laplacian operator:

2 2
ax ay

Motivated by physiology, we assume that there are two types of differential
samples, OFF-center and ON-center, representing, roughly, the positive and
negative parts of the Laplacian data. These very local samples are then

Page 3
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Receptive Fields and the Reconstruction of Visual Information

independently blurred by local weighted averages to multiple levels of resolution; o
see Fig. 2. The initial measurements and separation into OFF- and ON- center data o

occur in the retina. Some blurring can take place within the retina as well, although
most of the combination into larger receptive fields takes place in the cortex. L
To be more precise, we model the separation into OFF- and ON-channel data ,:’,.
by a non-negative function ¢(\) which is small but positive for A=0, which :‘}‘
increases linearly as A\ increases until some value where &(\) saturates. ¢(A) v
decreases to O as N decreases below A=0; see Fig. 3. The function ¢ models the <
e firing rate of neurons in, say, the optic nerve. Since firing rate is always a positive C
R number, ¢(A)=0. However the curve passes through a significant value when
R ¢ =y, the rest firing rate. o
‘ The value $(Af(x,y)) thus re‘presents an approximation to the positive part of "

Af(x,y), while &(—Af(x,y)) is an approximation to the negative part. Our samples
: will be given by .
) :|
. O
,‘ .!

L o

i L

Figure 2. Successive values of v(x,f)=AK(x,f), the Laplacian of a Gaussian, with

» o

increasing f along the y-axis. The blur parameter ~ ¢ — also can be thought of as
parameterizing receptive ficld size from small to large. For simplicity, in this
illustration we did not separate the OFF and ON components, which should be s,
thought of as comprising two separate channels. :,
lf‘
4
N
o
o
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Zucker and Hummel

sorr(x-J') - ¢(Af(x.)'))
Son(x,y) = &(—Af(x,y))

These samples are then independently blurred by local weighted averages to
obtain the data v(x,y,r) at multiple levels of resolution. In particular,

vorr(x.y 0= [ [K(x=x',y—=y' £)Sops(x' .y’ )dx'dy’

=K(x,y,0)*Sorr
and

PR E T

Von(x,y,1)= f f K(x—x',y—y',t)Son(x’,y')dx'dy

= K(I Y vt)‘SON

N where K(x,y,t) is a blurring kernel (typically a Gaussian) in which the amount of
blur is parameterized by r=0; see Fig. 2. As we shall see, these equations are quite
important to the theory, because they dictate the mechanism by which large
receptive fields are built up from small ones: by a convolution process of Gaussian
blurring.

4. Mathematical Background and Analysis

In this section we develop some of the mathematical analysis necessary to
understand the structure and power of our model. As you will see, it differs
substantially from the Fourier-type analyses prevalent in electrophysiology and

- -
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Figure 3. The “positive part” function ¢(A). It is used to separate the positive and

negative parts of the Laplacian measurements into separate channels. While the
5 function never goes below 0 mathematically, it is shown here passing through an axis
, that can be thought of as the background or resting firing rate of a neuron. Values
" above the axis indicate action potentials are more frequent than the resting firing
’ rate, while those below are less frequent.
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Receptive Flelds and the Reconstruction of Visual Information

N
psychophysics. Our purpose, in addition to developing the model, is to illustrate that :“
naturalness of Gaussian-related functions for such applications. Witkin [1983) has :
shown that the Gaussian enjoys interesting uniqueness properties as well. '
4.1. Blurring and the Heat Equation ‘%.

. Our scheme is derived from a diffusion process in which (temporal) spread v
will become analogous to (spatial) extent of receptive fields.3 It is formally based on :.-‘f
. the heat equation, the simplest such diffusion which has all of the necessary -
mathematical properties. The basic assumption carried by the heat equation is that, b
for a class of functions, certain spatial differentials (Laplacians) will be formally ‘ﬁ
equivalent to temporal derivatives. We shall begin by arguing intuitively for this ,:!
~ assumption. 3
Observe that, for a long conducting wire, a unit impulse of heat diffuses into 5
increasingly larger Gaussian distributions as time proceeds. Mathematically, let f(x) =
denote the initial temperature distribution as a function of the spatial variable i
x€R", (Clearly we are interested in the special case when n=2.) Then a solution to ‘
the heat equation u(x,t) giving the temperature level as a function of position x and §:(
positive time ¢, satisfying :ja'
u(x,0)=£(x) z
can be obtained from the convolution ,f,f
X
u(x,n)= [ K(x—x' 0)f(x)dx’ 0

R* W
=K(x,r)*f(x) "
where K(x,t) is the source kernel, [Widder, 1975]: ":‘
1 _ppa A

K(x't)= e kP’ ¢ .
47t '

Note that this source kernel is just a Gaussian. Since it acts as a blurring operator, o
we can regard the distributions u(x,r) as representing continuously coarser W
representations of the original data f(x) as ¢ increases. Referring to Fig. 1, observe ';::
that the successive blurring can now be interpreted as a diffusion of the sharp initial 3
pulse into a wide, diffuse one. In fact, assuming f(x) is bounded, u(x,r) as given ~
above is entire analytic. It is the unique bounded solution to the heat equation .
u=A47u fai

B

u(x,0)=£(x), i

N where A denotes the spatial Laplacian operator and u, denotes du/dt. Other o
- unbounded solutions are technically possible, both the function u(x,t) given by 3
:,‘-,:f convolution against the Gaussian kernel K is the one that naturally occurs in '::
s physical systems.* :f
;‘:% o
" That is, what is normally thought of as the time parameter will become a spatial “blur” parameter, as will ::
) become clear shortly. e
“In this paper we shall concentrate on the Gaussian kerne! as the blurring operator and the heat equation as ,‘{

the partis] differential equation (diffusion equation). However the analysis that we do can be extended to other A

o
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Zucker and Hummel

4.2. The Smallest Non-Zero Operator

It is important to note in the equations above that the initial data f(x) =u(x,0) is
not blurred at all, and that the parameter ¢ increases continuously from 0. This, of
course, could never be realized physically; it can only be approximated finitely.
While most of these approximations will not cause problems, one requires special
attention: the smallest receptor (size r=7>0) that is realizable physically. This
operator will become analogous to the smallest receptive fields, and mathematically
forces us to think not only of blurring (increasing f) but also of deblurring
(decreasing r).

4.3. De-Blurring and Backwards Solutions

Suppose we take the temperature distribution as representing the image data,
but blurred by the Gaussian kernel. Is it possible to reproduce the original data?
Specifically, given g(x)=u(x,r), for some fixed >0, is it possible to solve the heat
equation backwards to recover u(x,t) for 0<t=t? Can f(x)=u(x,0) be recovered?
This is the problem of deblurring Gaussian blur.

There are two separate aspects to the answer: whether recovery is possible in
principle and whether it is possible in practice. In principle it can be shown that
necessary and sufficient conditions for the existence of a solution to the heat
equation, u(x,r), 0<t=7, satisfying u(x,7)=g(x), x€R", are that g(x) be analytic,
and that the extension of g(x) to an analytic function of several complex variables
8(z), z€C", satisfy certain growth conditions [John, 1955]. Both of these
conditions, analyticity and bounded growth, fit smoothly into the vision context.
Thus deblurring is possible in principle. The question of whether de-blurring can be
actually be accomplished in practice raises other issues, however, to which we now
turn.

4.4. Stability and Positive/Negative Separation

Because we have used the nonlinear function ¢(A) in the definition of the
primitive sampling elements, it is difficult to analyze the behavior of the model in
terms of the spectral characteristics of receptive fields, or in standard analytical

terms. This early nonlinearity destroys, for example, superposition.’ However,
interesting behavior within any model generally depends on nonlinearities, and they
certainly exist physiologically. Placing the nonlinearity early in the model has
certain aesthetic attractions, and certainly does not preclude feasibility.

The potential benefits from using positive- and negative-part nonlinearities in
the model are substantial. They accrue from the effects of trying to undo
agglomeration; e.g., of deblurring. To illustrate, consider the problem of
reconstruction of a sinusoid from blurred samples. When blurred by a Gaussian, a
sinusoid transforms into another sinusoid of the same frequency but with smaller

o] amplitude:

N kernels and related partial differential equations. Thus, should the Gaussian turn out to be related only
' approximately to receptive fields, the structure of our model will still hold.

A form of “superposition” still holds for the linear portion of ¢(\), which suggests a number of
physiological experiments using Gaussian- and difference-of-Gaussian- probes. These will be developed in a
. subsequent paper. Some involve combinations of stimuli as in Watson et al. [1983]
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Receptive Fields and the Reconstruction of Visual Information

u(x,1)=K(x,1)*sin(wx)=A(w)sin{wx)
where
-x¥4

1
K(x,1)= e
*D=Ver
and
A(w)=e~*,

In other words, if we wish to deblur a sinusoid, we must multiply the amplitude by
1/A(m)=e‘°’. The difficulty is that we may not know the exact value of w. Worse, w
can be arbitrarily large. Thus for this fixed amount of blur, arbitrarily large
amounts of attenuation may have taken place. In particular, if we wish to deblur a
signal which is nearly zero with some minor perturbations, we can’t tell whether the
original signal was a fairly smooth one that survived the blur, or was a very large,
high frequency sinusoid that has been massively attenuated. The difficulty can be
summed up by noting that arbitrarily small errors in the representation of the
blurred data can lead to large changes in the deblurred reconstruction. This is what
is referred to mathematically as instability.

There are several ways around this instability problem, given that blurring is to
be considered inevitable. Our model incorporates a dynamic range limitation, in
that the initial receptors are assumed to saturate at some level (where &(\)
saturates), and separates the range into positive and negative parts. Intuitively this
is related to stability as follows. The difficulty with the high frequency sinusoids is
that the positive and negative portions quickly blend to cancel out each other. If the
initial data is non-negative, then there is less cancellation and significant features are
better retained through the blurring process. Of course, within our model the initial
intensity data is non-negative, but it is transformed into signed data by the Laplacian
operation. The positive and negative parts are separated, by ¢é(\), to avoid
cancellation during the blurring process.

These intuitions can be given a more precise mathematical formulation; recall
the previous discussion of backsolving the heat equation. In a classic paper on the
subject, F. John [1955] showed that, in addition to the mathematical conditions
required for the existence of a backsolution, if a nonnegative backsolution exists,
then stable reconstruction of u(x,t) is possible for a<t=t, where a>0. The degree
of stability depends on how small a is chosen; i.e., on how much deblurring is
attempted, and on the maximum value p in the blurred signal, where 0sg(x)=<p.
For a fixed a, John shows that the error in the backsolution is bounded by a
constant (depending on a) times u(‘")e". Here € is the error in the representation
of the blurred data, and 8 is a constant strictly between 0 and 1. Thus for a fixed
permissible amount of error E in the (partial) deblurring to a specified a>0, and a
fixed upper bound on the blurred signal g(x), the function g(x) will have to be
approximated by its representation € given by some small constant times EY®. Since
0<6<1, this says that extremely accurate representation of g(x) will be needed to
achieve accurate partial deblurring. This is a kind of “‘polynomial stability™, since,
for 1/6<N, we have

es<C-EV
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Zucker and Hummel

;:,‘ This is not as good as a usual notion of bounded linear stability (N=1), but is better
oy than the completely unstable situation that exists with Gaussian blurring in the
absence of the non-negativity assumption.
‘;: Returning to our model, the advantage of separating positive and negative data
;:‘ should now be clear: it permits stable backsolution and deblurring.
Q’l
) 5. On the Structure and Function of Receptive Fields
The strengths of models are in their explanatory and predictive power. We

oty consider some of these in this section, beginning with electrophysiological points
! and then returning to more mathematical ones.

4
b 5.1, Why Do Simple Cells Have Inhibitory Flanks?

g Simple cells are those in which the receptive field can be decomposed into
w, separate excitatory and inhibitory areas [Hubel and Wiesel, 1977]. While there is a
e great deal of variability within the shape of these receptive fields, for our purposes
& we can consider an idealized one as shown in Fig. 3. It’s envelope consists of two
s main structures: a Gaussian envelope in the preferred orientation, and a difference
W, of Gaussians across it. Since such cells play a role in orientation selection, it is
L instructive to consider the function of such a receptive field operator when
,":; convolved against a thin line. The Gaussian envelope can be interpreted as
'.:.‘ integrating information along the preferred direction, providing a maximal response
‘:' to the oriented stimulus. However, various imaging and neural blurring processes
::: can certainly diffuse the line into a thicker one, and the difference of Gaussians
o across the receptive field can be interpreted as “deblurring’ information. That is,
o the cross-section profile can function to effectively focus the line into a thinner one.
R0 While this is only one aspect of the orientation selection computation [Zucker,
: 1985], it does explain two properties of the shape of these receptive fields that mesh
o nicely with the other kind of theory.

kA3
) 5.2. Hyperacuity and Stable Backsolutions
4:'. A second application of deblurring ideas is related to the precision with which
:.: we can perform various visual tasks. Our visual acuity is given by retinal receptor
:.‘ spacing: if the frequency of a sinusoid is higher than the Nyquist sampling rate
", derived from this spacing, then the individual fluctuations cannot be resolved.
- However people can perform tasks (such as vernier alignment) that require spatial
:;, resolution higher than this Nyquist rate, an ability referred to as hyperacuity
.l

X (Westheimer and McKee, 1977]. One way to account for hyperacuity is to assume
the capability of interpolating values of an “image’ distribution using the measured
N sample values. In terms of our model, the available samples are the blurred local
differential data separated into positive and negative parts. However, recalling the
previous discussion, deblurring is theoretically possible if John's assumptions —
» including non-negativity — are met. Stable deblurring, moreover, is only possible

back to some extent (the constant a>0), depending on the noise. Thus our model
would suggest that the interpolation filters for deblurring are playing a role in

2y hyperacuity. This is novel both in a functional sense and because it further suggests
' an answer to the question of why hyperacuity is only as good as it is, and not better!
N Beyond this point the process becomes unstable.

;

R

e Page 9

-~

i,

L))
u‘\,'i

: . . . ; . P a® p P " AR ~prp - A
KR " : TN Ry, DR YO ) 3,001 Ty A T e - X & () \ 00
C fn" "f“, R L;‘*“’:*. “:t': ‘. !":"'ﬂ'.a \tf&‘ul’hl’n‘f‘s.w JOeS qJ':"'&l%'"!"'*:"s,‘_i, k'!‘.‘,’.'.l.‘?‘q Y, ,"f‘!n; IR N NN fcl“'t JA BT i;('ﬁht,ﬂ,« WS




Receptive Fields and the Reconstruction of Visual Information

Figure 4 An idealized simple cell receptive field. It consists essentially of a Gaussian
enveiope in the preferred orientation, and a difference of Gaussians across it. Since
such cells play a role in orientation selection, the Gaussian envelope can be
interpreted as integrating information along the preferred direction, while the
difference of Gaussians can be interpreted as “deblurring” information in the
perpendicular direction.

It is instructive to examine these deblurring filters; i.e, operators for computing
backsolutions to the heat equation by convolution, in more detail [Kimia, Hummel,
and Zucker, 1984). For technical reasons it is only possible to find a pseudo-inverse
to the general Gaussian blur operator. Pseudo-inverses have an order associated
with them, so that, intuitively, higher order approximations are capable of
deblurring more complex signals; i.e., signals containing more terms in their series
expansions. Now, as the order of the pseudo-inverse increases, the deblurring filter
acquires more sidelobes; see Fig. 5. Such additional sidelobes have been observed
physiologically [Movshon er al., 1978; Wilson et al.}, 1983, 1984], but only on the
smaller receptive fields! These are precisely the ones for which our theory predicts
they are necessary. Large receptive fields incorporate so much inherent blur that
high-order deblurring is completely unnecessary.

Our scheme differs in basic technical ways from others proposed to account for
the communication gap and hyperacuity. One class is based on (sinx)/x
reconstruction filters [Barlow, 1979; 1981; Crick et al., 1981.]. The numerical
analysis of such filters shows that they require too much spatial support (i.e.,
several lobes on either side) to function properly with the limited support apparently
available [Hummel, 1983]. In the context of John's stability results, ours is based on
Hermite polynomials [Kimia, Hummel, and Zucker, 1984]. Not only are these more
local than (sinx)/x filters, but they are derived from Gaussians and their derivatives,
the natural set of mathematical basis functions to use in the context of Gaussian
receptive fields. They resemble the (even) Gabor functions in shape, although our
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Figure § One-dimensional deblurring kernels of order 3, 5, 7, and 9. Note how, as
the order increases, the number of side-lobes increases as well. Such kernels are
visually indistinguishable from certain Gabor functions, and hence from the cross-
section through certain simple cells. The theory predicts that it is only the smaller
kernels that require side lobes, exactly as has been observed physiologically.

theory specifies why only certain of them (rather than all) are present. Purely from

the point of image communications, leaving aside issues of interpolation,
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. Receptive Fields and the Reconstruction of Visual Information 4
’,;, Y,
e 3
) scheme has a lot in common with, and we have benefitted a great deal from, the "
o discrete “Laplacian pyramids’ developed by Burt and Adelson [1983). There is a s
. sense in which our theory provides the foundations for, and a continuous analog of, :
:f\‘} theirs. However, without our mathematical analysis the connections to contrast o
jj'%:. separation, de-blurring, and interpolation would not have been clear. 3
' byt
:‘;féf 5.3. Difference of Gaussian Receptive Fields "
R . Circular surround receptive fields have been modeled by kernels given either Y
Wi as the difference of two Gaussians [Rodieck, 1965; Enroth-Cugell and Robson, 4
;.{.g 1966], or as the Laplacian of a Gaussian [Marr and Hildreth, 1980]. Although these ;
o kernels are distinct, we can interpret the former as a discrete analog of the latter.
iszaff This follows since the heat kernel K(x,r), a solution of the heat equation, satisfies y
. K (x,t
ARGz y= LD (R (1)~ K V=1, ;
;}:i;f, which is the difference of two Gaussians. We therefore take ,'::
s o
,;.g:; v(x, )= [AK(x—x' 0)f(x")dx’ "}
‘q:{!_' R “,'.
- as a continuous parameterization of variable receptive field sizes. As r increases, the ~
- spread of the Gaussian increases, which implies that the size of the receptive field "
':-: increases. It is precisely these operators that were plotted in Fig. 2. i}
:: It should be noted that this formulation, using the Laplacian of a Gaussian ' 4:
S kernel, corresponds to a difference of Gaussians scheme in which the two Gaussians b
\0 ‘
have nearly the same extent; i.e., 7;=r,. Interestingly, the (Laplacian of a _
Sl Gaussian) or difference of two similar Gaussians can be obtained by Gaussian 5,
““‘5 blurring the difference of two dissimilar but very local Gaussians. Observe: -
W
g'; [K(x,t+€)—K(x,t+€))* =K (x,0)*[K(x,€;)—K(x,€)]*f. 3
3 If t>>¢; and 1>>¢,, then (t+¢€;) = (1+¢,) as required. :
. Our scheme differs from other difference of Gaussian schemes (e.g., [Burt and 4
o Adelson, 1983; Marr and Hildreth, 1980) in which the separation between the two ‘:'
::‘: Gaussians (1,1, increases at coarser resolutions. \
i.t;,{. 3.!
i 5.4. Reconstruction in Principle: How Much Information is Available in '
- Receptive Fields? The continuous family of measurements suggests a way to .
Vit obtain the initial image data f(x)=u(x,0) from them. While this scheme is probably :"
:f:t." only of theoretical interest, it does provide an approach to determining the s:
::ef_g' completeness of the representation. It will also lead to a formula suggestive of how N
large receptive fields can be constructed from smaller ones. Since N
P vx.y.)=AK*f Y
B o
s =A(K*f) .
1:53;: I
ot =K*Af, "3
. v(x,r) can be interpreted either as the Laplacian of the blurred intensity data, i.e., N
;I:; as AK*f=Au(x,), or as the bounded solution to the heat equation using the initial ::
o ;
g '
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data Af(x). From the former interpretation and the fact that u(x,t) satisfies the heat
equation, we have that v(x,t)=Au(x,t)=du(x,t)/dt, so

T
= fv(x,y.0dt = u(x,y,00—u(x,y,T) = f(x)—u(x,y,T).
0

Now, u(x,T) is nearly constant for sufficiently large T, so the above integral can be
used to recover f(x) modulo an additive constant. That is, if the entire family of
measurements v(x,r),t€[0,7] were available, then the original could be trivially
reconstructed (up to its mean) by simply adding them up.

The above reconstruction scheme requires all measurements, from v(x,y,0) to
v(x,y,T). How can the smallest, physiologically unrealizable ones (those smaller
than t=1) be obtained? The alternate interpretation of v(x,t) above also shows how
we can obtain these values. Since v(x,f) is itself a solution to the heat equation, the
values of v(x,r), for 0<a=r=T, can be obtained by backsolving the heat equation
using v(x,T) as initial data. These backsolved data can then be used to evaluate the
above integral. This is the same point made previously in the discussion of
hyperacuity.

Of course, our model separated the initial data into two channels, one positive
and the other negative, and then blurred each channel separately. But
approximately,

Son(x,y) —Sorr(x,y)=(Af)(x,y).
Thus

Von(x,y.0) = vorr(x,y .0) =K(x,y,t)*[son(x,y) — sorr(x,y)]

zK(I.)‘J)‘Af=V(X.}’)

So the preceding discussion of reconstructing f(x,y) from v(x,y) applies to
theoretical reconstruction from data supplied by our model by setting

V(X 2y J) = VON(x 2y 9') = VOI"I"(x Yy vt) .

5.5. Construction of Large Receptive Fields

The previous equation, v(x,f)=K*Af, to emphasize connections with Sec. 2,
also shows how to construct larger receptive fields out of smaller ones: simply
convolve them with a Gaussian K(x,t) for a suitably large 7. (Actually the positive
and negative parts must first be separated; see Sec. 2.) This is how our model
constructs effective receptive fields from the initial local measurements. It should
be stressed that the pure Laplacian operating on the pure image data Af(x) is a
mathematical idealization. In practice, the construction of ¢(Af) and é(—Af) can
take place using local discrete approximations.

6. Summary and Conclusions

In summary, in this paper we attempted to lay out a new approach to
mathematically studying receptive field structure. As in other approaches, blurring
motivated the approach, with larger receptive fields successively constructed from
smaller ones. We began with initial image intensity measurements, but these were
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’ Receptive Fields and the Reconstruction of Visual Information

o immediately combined with a local differential operator. Thus both positive and
negative data arise. At this point our approach takes on a significant difference from
others, in that we then separated the data into positive and negative parts. These

K positive and negative parts were treated separately, with larger receptive fields built

~*:: by blurring smaller ones within each contrast channel.

The separation of positive and negative data has a number of advantages, given
the mathematical connection between blurring operators and differential equations.

* While it is not critical, we focused on Gaussian blurring and the heat equation to
: facilitate analysis. It then became possible to consider issues of deblurring and
\ backwards solutions of the heat equation. This lead to conjectures about the shape
:., of receptive fields and hyperacuity. The mathematical issue that we introduced was
I : stability, which shed new light on the reasons why positive and negative data should

be separated.

The model provided tools for constructing and understanding receptive fields.
We were able to provide functional explanations for the antagonistic structure of
simple cell receptive fields orthogonal to their preferred orientation (accurate
positioning of lines); and also for the extra side lobes found in smaller receptive
fields (deblurring and interpolation for hyperacuity). This contributed not only to
- understanding putative mechanisms for hyperacuity, but also suggested why it is

4 only as good as it is, and not better. Finally, in order to study how much

o information is stored in receptive fields, we also developed a reconstruction

2: technique that works in principal.

W But there is certainly more to receptive fields than just the representation of
visual information. The most pressing questions relate to how our visual system

;;i infers the structure of the world. The present theory compliments these latter

I investigations by providing functional constraints: how much deblurring is possible;

how much hyperacuity is possible, and so on. And it does it in a language that
seems more natural for this purpose than, say, Fourier basis functions. Whether
the analysis techniques that we propose will stand up to more detailed mappings
: onto physiology still remains. The more precise the mapping, the tighter the
! constraints.

{
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